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Abstract
This paper is devoted to the study of the viscosity solutimins

F(D?u,u,x)+f =0

in the whole spac&N, under suitable structural assumptionsfoinvolving the Pucci extremal operators
for the leading part and the Keller—-Osserman condition enzéroth order term. By means a kind of
Liouville method we prove that uniqueness of solutions bol@iherefore a unique growth at infinity is
compatible with the structure of the equations. Furtheetbe knowledge of these growth at infinity of
solutions is not required a priori. Due to the presence ofangtabsorption term, the Liouville Theorem
proved is independent on the dimension.

1 Introduction. The main contributions

Essentially, we focuss the attention on the uniquenesduaticos on elliptic PDE’s equations in the whole
spaceRN without growth restrictions. Usually this property invel/suitable versions of the well known
Liouville Theorem. From the prime paper by H. Brezis (seg,[@here uniqueness oEry weaksolutions
of the semilinear equation

—Au+u™lu=f inZ2’RN), uell (RY), m>1, 1)

other authors have studied the topic on several equaticdhsagiequate structures on divergence form (see
for instance [2]).
As in [8], or asin [10], we are interested in the solutionsha fully nonlinear equation

F(D?u,u,x)+f=0 inRN, N>1, 2)
whereF € ¢(.#N xR x RN), F # 0, satisfiesF(0,0,x) = 0 as well as the structural conditions
Py aAX=Y) SFXGEX) =F(Y,t,%) < 27 (X =Y), XY e N teR, xeRY, ®3)
and
F(X,S,X)—]F(X,t,x)Zao(X)B(t—S), XEyN,t,SGR,tZS, XERNv (4)

for some continuous and increasing functin R, — R,, B(0) = 0 and some functiomgy € % (RN)
satisfying the coercivity assumption

ag(x)>a >0, xeRN (5)
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By .#N, respectively”N, one denotes the set of the reakNN symmetric matrices, respectively the set of
the real Nx N symmetric and nonnegative definite matrices. Moreover < A, A > 0 are two given
constants for which one defines

A=Ay e +A Y aX), xesN,
&(X)>0 &(X)<0 ©)
DA =AY aX)+A Y aX), XesN,
' 8 (X)>0 a(X)<0

whereg (X) are the eigenvalues of X. Since one proves

- i N
Py AX) :Zelgyi,/\tracezx, Xes,

Py A(X) = sup traceZX, X e N
ZEJ?X/)\,/\

for
dhpa={Ze SN NEP<(ZE,E) <NEP, & RN,
one says that”;

A /\v@;/\ are the Pucci extremal operators. We send to [4] for someeptieg of these
operators. In particular, one proves the inequalities

PrAX=Y) <25 \(X) = Py \(Y) < 27 \(X=Y), XY esN

In order to simplify the exposition we omit in this paper ttvertual dependence oruljsee [8]). We note
that the structure (3), (4) and (5) is more general on themtégrece on Bu andu that those considered in
[8] or [10]. In (18) below we give an example which illustrateur contributions.

Since (2) is a non divergence equation the viscosity salsttbeory is applicable. More precisely, in
what follows we argue with semi—continuous viscosity sohs, thus with locally bounded functions

verifying
{ F(D?u*,u*,x) + f >0, @)

F(D?V,,V,,X) +g <0,

in an open se® C RN, in the viscosity sense (see [5]), for the upper and loweli-sepntinuous envelopes

(%) = limsup {uly) : [x—y| <},
U, () = liminf {u(y) : [x—y| <r}.

Certainly, one has
U (X) < u(x) < u*(x).

In fact, we will prove in Theorem 2 below that under suitabdswamptions the equation (2) only admits
continuous viscosity solutions wheneviee ' (RN).

From now on we drop the termiscositywhich is an artifact of the origin of this theory motivated by
the consistency of the notion with the methodvahishing viscositymainly for first order equations. In
Section 3 we give an existence result of a continuous solui@2) (see Theorem 4). Sinc@oj,\(X) =0

forX € 5@‘, whenevei = 0 condition (3) says that (2) is an elliptic degenerate fatiplinear equation and
therefore we can not expegf—solutions. For the non degenerate case,0, under additional assumptions
onF, we may prove, as in [4], thatis a%?—solution. We recall tha?”, , (X) is concave and/?’j‘/\(x) is
convex. Here we only prove uniform continuity of solutiose¢ Corollary 1). '

The construction of the solution obtained in Theorem 4 (2€@)(eads to a growth at the infinity. Our
main goal in the paper, as in [8], is to prove that the growthsduot depend on the construction nor can be
arbitrary: it only depends on the structure of the equatimh@nsequently a unique growth at the infinity
of the solutions is admissible and whose knowledge is natired a priori. It is derived from a result on
the uniqueness of the solutions of (2). Certainly, our dbations extend the relative ones of [8] or [10].
Here the elliptic degenerate cage- 0) and more general zeroth terms are considered (see Renark 2

Essentially the main result of [3], for (1), was obtained loystructing a precise test function and by
using the Kato’s inequality. Due to (2) has not variatiortalgture no Brezis test function, as in [3], is
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available. Therefore, we follows the same program of [8Edasn a kind of Liouville method. So, let
andv be solutions of (7) in an open s@tC RN, for f,g € €(Q). Since inequality

(Ve F W) 2 (Ve + W)00) + (P X 30) + 5(Y (X)X )+ 0( 3~ 30P)
implies
Vi (X) > Vi (Xo) + (p— DW(X0), X — Xo) + %<(Y — D?W(x0) (X—Xo), X — Xo) + O(|X— Xo|?)

for any %2 nonnegative function, W, the structural assumptions (8)(@hlead to

F(Y, (Vi +W)(X0), %) < 23 1 (D*W(x0)) +F (Y —D?W(xo), (Vs +W)(X0),Xo)
< 25 A (D*W(x0)) —a0(x0) B(W(x0))
+F (Y — D?W(Xo), Vi (X0), X0)

whence the definition of supersolution gives

F(D?u*,u*,x) + f >0,
(8)

F(D?(vs +W), v, +W,X) +g— 2 (D?W) +aoB(W) <0,

where the second order differential ter@i}TA(Dzw) is uniformly elliptic even ifA = 0. The main idea
is to prove a Liouville Theorem ou* — v, whence suitable consequences are deduced. Based on ahivers
interior bounds on cubes & (%) = {X€ RN : ||x—Xo|| < R}, [|[X— Xo||e = max [Xi — %o,i|, the Liouville

<i< '

Theorem is proved assuming the condition

® ds ;o
/.7&5<% B =B, (9)

due to J.B Keller and R.Osserman ([14], [15]). So, we condlieedecreasing and nonnegative function

e ds
Clearly,¥(t) is well defined by (9).

Theorem 1 (Local universal bound) Let us assumg). Then for three positive constanis a andN,
the decreasing function

. [AN Y(k)
Rk_“?c(Am)’ ke R4, (10)
verifies
im Rek=0 and IlimRyx=Rgy < oo, (12)
k——+o0 k—0

where ¢A.) is the maximum value of the function
- 1 1 ’
2| -+ —#
G a)

a RE—|xi—xoil?
W c(Aw) ) ——K ’
<C( WA Re )

f—
(s 1525

0<A<1l (12)

(13)
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for x € Qr, (%) C Q, whenever u and v are solutions(@) in Q, for f,g € ¢'(Q), provided(3), (4) and(5).
In particular, Qr, (x) C Q implies the inequality

(U —v,)(x) < Aﬁmk+ p? <Qil:8) %) . (14)

First of all, it is clear that
lim c(A) = lim c(A) =0,
A—0 A—1

consequently there exists.A€]0, 1] wherec(A) attains their maximum valueg.

4
c(A) <c(Aw) < ?, 0<A, <1

The proof of Theorem 1 is given in Section 2. Itis based on tmsthat

N 2 Iy —¥%n:l2

is a classica¥? solution of

— 25 \(D*WR,) + 20 (Wr,) >0 inQg, (o). (16)

Therefore (8) becomes

{ F(D?u*,u*,x)+ f >0 inQg,(Xo),

, , (17)
F(D?(Vi + WR,), Vs + Wg,,X) +9< 0 inQg,(Xo).

So that, the result is derived by using the behaviour

WR, (X) =, xe€dQgr,(Xo)
(see the next section for details).

Remark 1 From [15] universal bounds as (13), with= g = 0, are well known on balls, mainly for the
semilinear equation
—Au+|u™lu=0, m>1

In some sense, similar bounds for
—Au+B(u) =0,

assuming (9), can be derived from [14] but they are moreiotist due to it require$!(0) = « (see the
comments of Section 2). As in [7] or [16], other extensiorsmssible. Here by simplicity the universal
bounds are obtained on cubes (see the comments of the nérh$edNVe note that in [10, Lemma 2.4]
an interior estimate is obtained by means of the AlexandBi#kelman—Pucci inequality, consequently it
requires the uniform ellipticity of", thusA > 0. o

Remark 2 Simple choices of8 verifying (9) are the power—like absorptions @g(t) =t™, m> 1, for
which

_ m-1 — w1
40 (37r)
and 2
; 1 N /e(As)(m-1) G RZ— X —x0i[2\ ™1
(U — V) (x) < A_M.Z\< 5 AT k iy >
f_ b
+ (SUR?RK(XO) %)



A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations 5

where )
AN(Mm+1) 2k "z
Rk = k>0
§ a C(Ax)(M—1) ”

and R = « (see (13)). We note that by the classical inequality

t+9™t+s) —tf™ Ut >21""" teR,seR,, m>1,

the illustrative equation

25 (D?u) —aglu/™ tu+f =0 (18)
is included in the cases where our contributions apply.dga 1 it was studied in [8] and [10]. Whenever
A = A\ =1andag =1 equation (18) becomes (1). o

An important consequence follows@ is the whole spacBN. Then sinceQr(x) ¢ RN, if 0 < R < Ry,
the properties (11) imply

(U —v,)(x) < Nyt g1t (sup%> forallk > 0.
Aw RN a

So, one concludes the main contribution in the paper

Theorem 2 (Comparison of solutions in the whole space) Suppose the structural assumptidq3,
(4) and (5), as well as the Keller—Osserman conditi(8). Let u and v be solutions @) in RN, for
f,ge ¢(RN) then

mw—w»qms31<511@ﬂﬁ>- (19)

a
Consequently, if u is a solution ¢2) one deduces
u* <u, inRV,
thus, the equatio(2) only admits continuous solutions. Moreover, one has théimeous dependence on
the data .
Ju—v]o<p?t (7” —agllm). (20)

for solutions of(2) relatives to f g € €' (RN). In particular, the equation
F(D?u,u,x)+f=0 inRN
has at the most a solution. So=f0 implies u= 0 (Liouville Theorem) o

Remark 3 Some other versions of the Liouville Theorem are well knoartifie Pucci extremal operators,
mainly depending on the dimension N (see, for instance, [$]8]) Here, ifv=g= 0, (19) becomes the
estimate

uwsmmsﬁﬁﬁgﬁ,xew,

and thenf < 0 impliesu < 0. We note that the presence of a strong absorption termesablo derive this
version of the Liouville Theorem independent on the dimemsBee also [1] were a comparison principle
in the whole space is obtained. o

Let u a continuous solution of (2) ande RN. Then if F(X,r,x) = F(X,r), ay(x) = a, the function
v(-) = u(-+y) solves
F(D?,v)+g=0 inRN

whereg(-) = f(- +Yy). So, from the inequality (20) one deduces
[f(z+y) - f(2)]
a

|u(x+y)—u(x)|§ﬁ1<sup . xyeRN

zeRN

and
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Corollary 1 (Regularity) Let u be a solution of
F(D?u,u,x)+f=0 inRN

where f uniformly continuous iRN andF(X,r,x) = F(X,r), ag(x) = a, then

pu(s) <pt (pf—(s)> , >0,

a
where byp, we denote the modulus of continuity of a function h. o

As it was pointed out above, the behavior at infinity of thesmlbtions of (2) in the whole spa@ is
not known a priori. Under (3), (4), (5) and (9) we may give atineate by arguing on the cub&¥ (x).
Vi

More precisely, it follows

u(x)—B 1| sup T+
Qx () a
limsup 2

o= g1 a X
W (C(Am) NA 2

Remark 4 The assumption (9) is in some sense sharp in the above aatigrib (see Proposition 1 below).
On the other hand, we emphasize, once more, that the abauésrasd their consequences are obtained
under the inequality & A <A, A > 0, hencéF can be eventually degenerate. o

N
< —.
~ Aw

Let us return to the inequality (14) whenever one satisfies

ds ;o
/o+ N (21)
Then
. [Wwo
Ro=\ o can) <
implies
Wa,(10) = A9 ($(0)) =0, if Qgy(0) € @,

for which a dead core can appear. So by using the classiagaiey ||x||2 < v/N||X||. we obtain
Theorem 3 Assumé3), (4), (5), (9) and(21). Let u be a solution of
F(D?u,u,x)+f=0 inQCRN.
Then
u(x)=0 if dist(x,suppf) > N\/gctd(\z))’

providedsuppf # RN. .

Remark 5 We note that the localization is independent on the valuesasf the eventual boundapQ.
General properties of the dead core have been collectee imtimograph [9]. o

Remark 6 Theorem 3 applies for an increasing function®such tha{3(r) = r™ with m> 1 for larger
and 0< m< 1 for smallr. o
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2 Interior properties and other comments
We begin here with a technicality directly derived from (8) fvhich we may define a functiah({) given

implicity b
plicity by /.oo s _ B, o2
ro) /B(S) VA

where A and B are two positive constants to be chosen latem&yns of the auxiliar decreasing function
W :]0,0[—]0,¥(0)[ given by

® ds
w(t):/t o 0<t<m WO«

one has B L 5
- = _ Tyl B
W(Ao0) =2l o= g (). 29
with ®(0) = 00, ® FLP(O) = 0. We note thatV is independent on the constants A and B. Then we
obtain B
—®7({) = —=1/B(AP(0)),
‘ AyA 0<z<Ny), (24)

B
D7) = mﬁ(Aq’(()),
So that, we get to the one dimensional result

Lemma 1 LetRy > 0 given in(10), with N =1, and % € R, then the function

2 2
W(x) = Aiqu (C(Am)\/%W), “Re < X—X0 < Ry, (25)
satisfies
—AW'(x) +ap(X)B(W(x)) >0, —Rk<x—x% <Ry
provided(5) and(9).
PrRooOF In order to simplify we assume with no loss of generatigy= 0, then the function
wx) =®({(x), {(x)=Rg—|x? —Re<x<R,
satisfies B
W) = (L(9)'(X) = szm B(AD(Z(x))),
W(X) =Pz (%)) (%) + Pz ({(x))"(x)
B
We note that
w(x) = O(RE — [x?) = %w*l (%(RZ— |x|2)> , —Rx<x<Ry,

is well defined if

Thenw”(x) > 0 and
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On the other hand, inequality

B B ®CX)  ds  _ (1-A)D({(X) (1—A)D(Z(%)
VAR JRE0 2 / B(s) - -
VB T B(0(C) T /@(L00)B(P(¢(0))
implies
2
VARIC00)B(@(200)) < ooy [Ap(e(c(x))
whence
! 212 1 1

M) < 28°RE | £+ i AJB(w(x))Sao(x)B(w(x)), “Re<x<Rq

provided

BR¢ \?
- =qa
c(A)

In fact, for A= A, and these choice of B one has

B
JRR= W9 < WO,

(]

A reasoning of separation of variables with respect to amuienables us to extend the results of
Lemma 1 to arbitrary dimension X 1.
PROOF OFTHEOREM 1 Again we assume with no loss of generality= 0. Then the reasoning of the
proof of Lemma 1 proves that the function

Wg,(X) Zdn (%) =R — X[, —Ri<x <R,
satisfies, in the cub®g, (0), the property

1 N
e <R[ St
< 2NB?R2 [A—1m+(1 Am)\/—m]B(WRk( )

or
NAWR, (X) < 80(X)B (Wr, (X))

BRy = C(Am)\/g.

So that, since BWg,(x) > 0, in the.”N sense, we have?, , (D°Wg, (X)) = AAWg,(x) (see (6)) and
consequently '

provided

— 25 A(D°WR (X)) +20(X)B(Wr, (X)) >0, x€ Qr,(0),
and the inequalities
F(D?u*,u*,x)+ f >0 inQg(0),
{ F(D?(V. + W),V +Wg,,X) +g< 0 in Qg (0).

hold. Since W, = » ondQg, (0) we deduce

u <V, +WRk on aQkas (0)7
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for smalle > 0, then comparison principle (see [4] or [5]) and (4) lead to
f— :
Ut <V, +Wg +B71 ( sup ¢> in Qr, _¢(0).
Qr,0 @

Finally, sendinge — 0 one concludes the result. o

The importance of the condition (9) in our contribution i®®&im as follows

Proposition 1 Under(3), (4) and(5) let us assume th#9) does not hold. Then for each positive constant
M there exists an unbounded functiog &?(RN) such that
F(D?u,u,x) <0 inRN,
M <u(x), xecRN.

PrROOF  Fixed M we consider the functiom given by

w(r) ds a
'/M 7% = \/;r, r>0.

Clearly, one has

AW (r) =aB(w(r)), r>0,
w(r) >w(0) =M,
w (0) =0.
Moreover o ds
| A== ¥=*
implies
rIiﬁrrc]ow(r) = o,

Then we define the function
u(x) =w(|xa|), x=(xq,...,xn) € RN,
for which the structure assumptions give
F(D?u,u,x) < EZ;A(DZu) +F(0,u,x) < AW’ (|xq]) — ao(X)B (W(|x1]) < 0.

a

In particular, M being arbitrary, the proof of Propositiostows that if (9) fails is not possible interior
estimates for the semilinear equation
—NAu+aB(u)=0.

3 Solutions in the whole space

Some consequences of Theorem 1 were included in the Sectidav2 we show that the universal bound
(13) and the comparison (19) enable us to give an existesod gy means of the Perron method (we send
to [4] or [5] for details). More precisely

Theorem 4 (Existence) Assumé3), (4), (5)and(9). Let f € %(RN) bounded. Then the equation
F(D?u,u,x)+f=0 inRN

has a unique bounded continuous solution.
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PROOF  We only sketch the proof because we apply the reasoningl.ofj8cef € %”(RN) is bounded
from below there exists a positive const@&such that

~aB(C) < f(x), xeRY,

then
F(0,C,x)+ f(x) >0, xeRN,

implies that
4 = {w upper semi—continuous RN : F(D?w,w,x) + f > 0inRN}

is a non empty set. The version of the local universal bouh8sfor semi—continuous solutions of
F(D*wwx)+f>0 inRN
enables us to construct the locally bounded function
u(x) =sup{w(x): we ¥}, xecRN (26)
As in [8, Proposition 1], one proves thats, in fact, the maximal element of the $éf therefore
u(x) <u*(x) <u(x), xeRN,

i.e, u=u*and
F(D?u,u,x)+f>0 inRN.

On the other hand, by a contradiction argument, as in [8, fégm@], one derives that, solves
F(D?u.,u,,X) + f <0 inRN.
Finally, the version of the comparison (19) for semi—combias solutions concludes
u(x) <u.(x), xeRN,
whence the result follows. o

Remark 7 Obviously, the solution obtained in (26) has the globaldfarred regularity given by Corol-

lary 1. o
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